长期演进网络中基于粒子群的天线下倾角自优化方法
针对第三代合作伙伴项目(3GPP)中自组织网络(SON)的覆盖与容量自优化问题,提出了一种基于粒子群优化(PSO)算法的有源天线下倾角优化方法.首先,确定基站(eNB)中传输数据的用户设备(UE)数,用户测量上报邻小区参考信号接收功率(RSRP)信息和位置信息;然后,确定优化目标预设适应度评价函数为频谱效率(sE);其次,将下倾角同时优化问题看作是多维优化问题,选择天线下倾角为粒子集合,使用PSO算法求解得到天线下倾角的最优值;最后,通过系统自主调整优化下倾角,实现长期演进(LTE)网络中容量及覆盖的自优化.通过建模及仿真结果分析,此算法在优化目标不同时可以取得不同的优化效果:优化目标为用户平均频谱效率时,采用传统黄金分割优化算法频谱效率较初始设定提升12.9%,采用PSO算法可提升22.5%;调整优化目标为用户加权平均频谱效率时,对边缘用户,传统黄金分割优化算法并无明显提升,PSO算法取得了19.3%的优化提升.实验结果表明,该方法可提升用户吞吐量,改善系统性能.
长期演进 有源天线 下倾角优化 粒子群优化算法
连晓灿 张彭园 谭国平 李岳衡
河海大学通信与信息系统研究所,南京211100
国内会议
南宁
中文
97-102
2016-08-19(万方平台首次上网日期,不代表论文的发表时间)