会议专题

基于移动用户上下文相似度的张量分解推荐算法

针对移动服务推荐中用户上下文环境复杂多变和数据稀疏性问题,提出一种基于移动用户上下文相似度的张量分解推荐算法——UCS-TF.该算法组合用户间的多维上下文相似度和上下文相似可信度,建立用户上下文相似度模型,再对目标用户的K个邻居用户建立移动用户-上下文-移动服务三维张量分解模型,获得目标用户的移动服务预测值,生成移动推荐.实验结果显示,与余弦相似性方法、Pearson相关系数方法和Cosine1改进相似度模型相比,所提UCS-TF算法表现最优时的平均绝对误差(MAE)分别减少了11.1%、10.1%和3.2%;其P@N指标大幅提升,均优于上述方法.另外,对比Cosine1算法、CARS2算法和TF算法,UCS-TF算法在数据稀疏密度为5%、20%、50%、80%上的预测误差最小.实验结果表明UCS-TF算法具有更好的推荐效果,同时将用户上下文相似度与张量分解模型结合,能有效缓解评分稀疏性的影响.

用户上下文 张量分解推荐算法 数据稀疏 移动推荐 误差控制

余可钦 吴映波 李顺 蒋佳成 向德 王天慧

信息物理社会可信服务计算教育部重点实验室(重庆大学),重庆400030;重庆大学 软件学院,重庆401331

国内会议

第十七届中国Rough集与软计算学术会议、第十一届中国Web智能学术研讨会、第十一届中国粒计算研讨会及第五届三支决策学术会议联合会议 (CRSSC-CWI-CGrC-3WD 2017)

合肥

中文

2531-2535

2017-05-26(万方平台首次上网日期,不代表论文的发表时间)