基于Adaboost和码本模型的手扶电梯出入口视频监控方法
针对传统视频监控方法无法对密集前景目标进行准确分割的问题,提出一种基于Adaboost和码本模型的多目标视频监控方法.首先,通过训练得到Adaboost人头分类器,利用码本算法为垂直拍摄的手扶电梯出入口图像建立背景模型,提取前景图像对其进行人头检测和跟踪;之后,剔除行人目标得到物件目标,对物件目标进行跟踪;最后,根据行人和物件的运动特征进行监控.对12段出入口视频序列的实验结果表明,监控方法能够准确稳定地跟踪行人和物件,完成逆行检测、客流统计、行人拥堵和物件滞留等监控任务,处理速度达到36帧/秒,目标跟踪准确率达到94%以上,行为监控准确率达到95.8%,满足智能视频监控系统鲁棒性、实时性和准确性的要求.
视频监控 人头检测 人头跟踪 运动特征 背景模型
杜启亮 黎浩正 田联房
华南理工大学 自动化科学与工程学院,广州510640
国内会议
第十七届中国Rough集与软计算学术会议、第十一届中国Web智能学术研讨会、第十一届中国粒计算研讨会及第五届三支决策学术会议联合会议 (CRSSC-CWI-CGrC-3WD 2017)
合肥
中文
2610-2616
2017-05-26(万方平台首次上网日期,不代表论文的发表时间)