会议专题

基于肌电信号和加速度信号的动态手势识别方法

为了增强手势识别的多样性和简便性,提出了一种基于肌电信号(EMG)和加速度(ACC)信息融合的方法来识别动态手势.首先,利用MYO传感器采集EMG和ACC的手势动作信息;然后分别对ACC和EMG信号作特征降维和预处理;最后,为减少训练样本数,提出用协作稀疏表示分类器来识别基于ACC信号的姿态手势,用动态时间规整(DTW)算法和K-最邻近分类器(KNN)来分类EMG信号的手形手势.其中在利用协作稀疏表示分类器识别ACC姿态信号时,通过对创建字典最佳样本个数以及特征降维的维数进行研究来降低手势识别的复杂度.实验结果表明,手形手势的平均识别率达到了99.17%,对于向上向下、向左向右4种姿态手势平均识别率达到96.88%,而且计算速度快;对于总体的12个动态手势,其平均识别率达到96.11%.该方法对动态手势的识别率较高,计算速度快.

手势识别 稀疏表示 肌电信号 加速度信号

谢小雨 刘喆颉

太原理工大学 物理与光电工程学院,太原030024

国内会议

第十七届中国Rough集与软计算学术会议、第十一届中国Web智能学术研讨会、第十一届中国粒计算研讨会及第五届三支决策学术会议联合会议 (CRSSC-CWI-CGrC-3WD 2017)

合肥

中文

2700-2704

2017-05-26(万方平台首次上网日期,不代表论文的发表时间)