Regulation of DHICA-mediated antioxidation by dopachrome tautomerase: Implication for skin photoprotection against UVA radiation
Dopachrome tautomerase (Dct) is a critical enzyme in the melanogenesis pathway that isomerizes the intermediate dopachrome to 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and influences the proportion of DHICA monomer incorporated into the 5,6-dihydroxyindole (DHI) polymer in eumelanin.To investigate whether Dct inactivation affects skin photoprotection against ultraviolet radiation, we examined levels of reactive oxygen species (ROS), sunburn cell formation, epidermal cell apoptosis, and melanin composition in skins of Dct-/-knockout mice compared with skins of wild-type C57BL/6 mice under UVA-induced oxidative stress.The results demonstrate that Dct inactivation elevates the level of ROS, increases the numbers of sunburn cells and apoptotic cells, and decreases the amount of eumelanin in the epidermis upon exposure to chronic UVA radiation.Moreover,we determined the effects of DHICA-melanin,DHI-melanin, and a mixture of both on hydroxyl radical generation in the Fenton reaction utilizing an electron spin resonance assay.DHICA-melanin exhibits a potent hydroxyl radical-scavenging activity, whereas DHI-melanin does not.Thus, this study suggests that DHICA monomers are required to incorporate into the DHI polymer backbone of eumelanin, which highlights the important role of Dct in the regulation of DHICA-mediated antioxidation.
Dopachrome tautomerase Eumelanin Antioxidation Photoprotection Reactive oxygen species Electron spin resonance Free radicals
Shan Jiang Xiao-Ming Liu Xin Dai Qiong Zhou Tie-Chi Lei Friedrich Beermann Kazumasa Wakamatsu Shi-Zheng Xu
Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan 430060, China Swiss Institute for Experimental Cancer Research, School of Life Science, Ecole Polytechnique Federa Fujita Health University School of Health Sciences, Toyoake Aichi 470-1192, Japan
国内会议
武汉
英文
41-50
2011-11-01(万方平台首次上网日期,不代表论文的发表时间)