汶川县地震滑坡易发性LR与NN评价比较研究
通过地理信息系统(GIS)技术,结合神经网络(NN)和逻辑回归模型(LR)开展汶川县范围内地震诱发滑坡易感性评价,并对两种模型结果进行比较研究.基于2008年5.12 Ms8.0级地震,选取高程、坡度、坡位、坡向、岩性、微地貌、距断层距离、距水系距离、距道路距离、年平均降雨量、归一化植被指数、地震峰值加速度共12个因子作为地震滑坡影响因子,基于ARCGIS10.1平台将这些影响因子专题图层栅格化;采用提取的模型训练样本,由R软件对神经网络(NN)和逻辑回归模型(LR)进行训练;将训练好的模型对整个汶川县地震滑坡易感性进行仿真,并将仿真结果划分为五类滑坡敏感区域:极低,低,中,高和极高,分别得到LR与NN模型仿真的滑坡易发性分区图;根据汶川县实际地震滑坡分布图进行统计分析,以及采用ROC曲线对两种模型的仿真结果进行对比分析,神经网络(NN)和逻辑回归模型(LR)的AUC值分别为0.930和0.941.研究表明两种模型的滑坡易感性评价图与实际滑坡发育基本吻合,评价结果较好,且LR模型预测精度相对较高.
地震滑坡 易发性分区 神经网络模型 逻辑回归模型
文海家 胡东萍 王桂林
重庆大学土木工程学院,重庆400045;重庆大学山地城镇建设新技术教育部重点实验室,重庆400045
国内会议
广州
中文
17-23
2014-12-01(万方平台首次上网日期,不代表论文的发表时间)