基于BP神经网络的透明转发卫星功放预失真
研究卫星通信功放性能优化问题,传统的预失真技术通常用来补偿地面功放的非线性失真或仅考虑卫星功放的失真补偿,线性化性能有限.为解决上述问题,提出了一种适合透明转发卫星的星地一体BP神经网络预失真算法.改进算法的学习结构同时考虑了卫星地球站固态功放和透明转发卫星功放的记忆非线性特性,利用带抽头延迟的BP神经网络作为预失真器,并结合收敛速度较快的Levenberg-Marquardt算法对其权值和阈值矢量进行自适应更新.仿真结果表明,经过神经网络预失真的星座图误差矢量幅度改善了84.67%,输出信号功率谱带外再生抑制提升近了13dB,线性化效果十分显著.
卫星通信 功放预失真 BP神经网络 仿真分析
杨茂强 郭道省 潘小飞
解放军理工大学通信工程学院,江苏南京210007
国内会议
中国计算机用户协会仿真应用分会成立三十周年庆祝大会暨2013全国仿真技术学术会议
呼和浩特
中文
177-181
2013-09-01(万方平台首次上网日期,不代表论文的发表时间)