基于小波神经网络的船舶缆绳载荷预测方法
在船舶缆绳载荷准确预测的研究中,由于船舶缆绳载荷不仅受到风、流、浪等环境因素的影响,还受到船舶的船型、受风面积、吃水大小等因素的共同影响,因此具有较强的随机性和复杂性,是一种非平稳的时间序列,传统的神经网络预测模型在进行负荷预测过程中,无法处理这种非平稳信号导致很难进行准确测量.提出一种基于小波神经网络的船舶缆绳载荷预测方法,算法结合小波分析的时频局部特性与聚焦特性和神经网络的自学习、自适应和推广能力,将小波基函数作为神经网络的隐含层节点的传递函数,建立小波神经网络预测模型,以船舶缆绳的采集数据作为模型的输入与输出,利用小波函数处理非平稳信号的能量,解决缆绳负荷的非线性问题,凭借神经网络小区域计算能力,对预测结果进行进一步优化.仿真结果表明,小波神经网络用于船舶缆绳载荷数据处理,精度满足要求,具有良好的适用性.
船舶缆绳 载荷预测 小波神经网络 仿真模型
郑剑 白响恩 肖英杰 张浩
上海海事大学航运仿真技术教育部工程研究中心,上海200135
国内会议
中国计算机用户协会仿真应用分会成立三十周年庆祝大会暨2013全国仿真技术学术会议
呼和浩特
中文
370-373
2013-09-01(万方平台首次上网日期,不代表论文的发表时间)