考虑情感程度相对顺序的维度语音情感识别
维度语音情感识别(Dim-SER)是情感计算领域的一个新兴分支,它从多维、连续的角度看待情感,将SER问题建模为连续值的预测回归任务。当前的Dim-SER系统在进行情感预测时缺少对语料间情感程度相对顺序的考虑,严重影响了人机交互系统对说话人情感变化趋势的把握。从该需求出发,本文以人类情感认知特性为参照,构建了一个对情感程度相对顺序敏感的Dim-SER系统,并引入Gamma统计对SER系统性能评价标准加以完善。系统构建过程中,本文构造了Top-rank概率分布对语料间的情感顺序进行描述,并使用Kullback-Leibler距离对预测造成的顺序一致性损失进行度量,最后提出顺序敏感的神经网络算法实现系统预测损失的最小化。情感预测实验结果表明,同常用的k近邻算法和支持向量回归算法相比,该系统有效地提高了语料间情感程度相对顺序的正确性。
维度语音情感识别 情感空间 Kullback-Leibler距离 神经网络 梯度下降
韩文静 李海峰 马琳
哈尔滨工业大学计算机学院,黑龙江哈尔滨150001
国内会议
北京
中文
1658-1663
2011-11-17(万方平台首次上网日期,不代表论文的发表时间)