基于无约束迭代学习的间歇生产过程优化控制
针对基于迭代学习控制的间歇过程优化控制算法难以进行收敛性分析的难题,本文基于数据驱动的神经模糊模型提出一种新颖的间歇过程无约束迭代学习控制方法,通过调节因子的变化去除了约束条件,使控制轨迹在批次轴上收敛,并创新性地对优化问题的收敛性给出了严格的数学证明.在理论研究的基础上,将本文提出的算法用于间歇连续反应釜的终点质量控制研究,仿真结果验证了本文算法的有效性和实用价值,为间歇过程的优化控制提供了一条新途径.
间歇过程 产品质量控制 迭代学习
贾立 施继平 邱铭森 俞金寿
上海大学机电工程与自动化学院自动化系,上海市电站自动化技术重点实验室,上海,200072 新加坡国立大学工程学院,119260,新加坡 华东理工大学自动化研究所,上海,200237
国内会议
杭州
中文
1889-1893
2010-08-07(万方平台首次上网日期,不代表论文的发表时间)