会议专题

浅析函数的单侧导数与导函数的单侧极限

常见的分段函数由于它在除分段点外的小区间内的每段函数都是初等函数,所以,它们在这些小区间内都是连续,可导的。而要研究整个分段函数在其定义域内是否连续,可导,关键要看它在分段点处的连续性与可导性。其中,连续性的判别相对较简单,而分段点处可导性的判别就要用到单测导数的定义,通常情况下,这类问题相对复杂。在学生中易出现的错误是直接将分段点代入导函数求分段导数,从而判断在该点处是否可导。对于这种做法,有时结果上是正确的,但缺少必要的理论基础。本文通过对函数的单侧导数与其导函数的单侧极限之间的关系的研究,得到结论:对于在分段点处的单测邻域内连续,可导的函数,如果其导函数的单测极限存在的话,则其单测导数就等于导函数的单测极限。从而给出了一个在满足上述情况下的求分段函数在分段点处单测极限的方法——直接讲分段点代入导函数印可。但必须要注意的是,上述条件是充分非必要条件,当导函数的单测极限不存在时,不能用此方法来运算。反例见本文中例3。

单侧导数 单侧极限 导函数 分段函数

鲁亚男 刘欣

沈阳化工学院数理系 110142

国内会议

第三届沈阳科学学术年会

沈阳

中文

665-667

2006-09-07(万方平台首次上网日期,不代表论文的发表时间)