会议专题

集成多种背景语义知识的共指消解

共指消解是信息抽取中一个重要子任务.近年来,许多学者尝试利用统计机器学习的方法来进行共指消解并取得了一定的进展.背景知识作为新的研究热点已经被越来越多的利用在自然语言处理的各个领域.本文集成多种背景语义知识作为基于二元分类的共指消解框架的特征,分别在WordNet、维基百科上提取背景知识,同时利用句子中的浅层语义关系、常见文本模式以及待消解词上下文文本特征.并利用特征选择算法自动选择最优的特征组合,同时对比同样的特征下最大熵模型与支撑向量机模型的表现.在ACE数据集上实验结果表明,通过集成各种经过特征选择后的背景语义知识,共指消解的结果有进一步提高.

共指消解 信息抽取 自然语言处理 文本模式 文本特征 最大熵模型 背景语义知识

郎君 忻舟 秦兵 刘挺 李生

哈尔滨工业大学信息检索研究室 150001

国内会议

第四届全国信息检索与内容安全学术会议

北京

中文

146-155

2008-11-15(万方平台首次上网日期,不代表论文的发表时间)