一种基于流形学习的故障模式识别方法
利用流形学习方法能有效提取高维非线性数据中嵌入的低维流形特征.将其引入到设备故障诊断领域,应用于故障模式识别问题,提出了一种基于流形学习的故障模式识别新方法.运用基于拉普拉斯特征映射的非线性降维算法直接对原始故障信号进行学习,提取数据内在的流形特征,极大地保留了信号中内含的整体几何结构信息,有效克服了常规模式识别方法仅能获得局部线性结构的不足,明显改善了故障模式识别的分类性能.仿真和工程实例结果表明了所提方法的可行性和有效性.
故障诊断 模式识别 流形学习 拉普拉斯特征映射 流形特征 故障模式
蒋全胜 贾民平 胡建中 许飞云
东南大学机械工程学院,江苏,南京211189;安徽巢湖学院物理系,安徽,巢湖,238000 东南大学机械工程学院,江苏,南京211189
国内会议
第九届全国振动理论及应用学术会议暨中国振动工程学会成立20周年庆祝大会
杭州
中文
2329-2334
2007-10-17(万方平台首次上网日期,不代表论文的发表时间)