一种高斯分布的调整粒子滤波算法
粒子滤波(PF)方法与传统的非线性滤波方法如扩展卡尔曼(EKF)类方法相比,无需计算Jacobi矩阵,受初始状态影响小而稳定性强,因此粒子滤波方法研究成为非线性滤波研究的热点问题.但在可观测性较差的非线性系统滤波中常用的普通粒子滤波方法(GPF)易受退化、采样枯竭等因素影响而在可能会引起滤波误差大甚至不收敛等问题.本文提出了一种高斯分布的调整粒子滤波跟踪算法,即在粒子再采样后加上一定的高斯噪声分布调整粒子分布,以产生更接近真实状态的粒子.经过只测角定位跟踪举例仿真表明,本文方法具有较高的滤波精度.
跟踪 概率密度函数 粒子滤波
郭福成
国防科技大学电子科学与工程学院
国内会议
苏州
中文
499-502
2005-08-01(万方平台首次上网日期,不代表论文的发表时间)