An Ant-based Algorithm to Solve Distributed Constraint Optimization Problems
As an important population-based algorithm,ant colony optimization(ACO)has been successfully applied into various combinatorial optimization problems.However,much existing work in ACO focuses on solving centralized problems.In this paper,we present a novel algorithm that takes the power of ants to solve Distributed Constraint Optimization Problems(DCOPs),called ACO DCOP.In ACO DCOP,a new mechanism that captures local benefits is proposed to compute heuristic factors and a new method that considers the cost structure of DCOPs is proposed to compute pheromone deltas appropriately.Moreover,pipelining technique is introduced to make full use of the computational capacity and improve the efficiency.In our theoretical analysis,we prove that ACO DCOP is an anytime algorithm.Our empirical evaluation indicates that ACO DCOP is able to find solutions of equal or significantly higher quality than state-of-the-art DCOP algorithms.
DCOP ant ACO
Ziyu Chen Tengfei Wu Yanchen Deng Cheng Zhang
Chongqing University
国内会议
上海
英文
452-470
2019-05-17(万方平台首次上网日期,不代表论文的发表时间)