会议专题

面向真实水下图像增强的质量评价数据集

  目的 由于光在水中的衰减/散射以及微生物对光的吸收/反射等影响,水下图像通常存在色偏、模糊、光照不均匀以及对比度过低等诸多质量问题.研究人员对此提出了许多不同的水下图像增强算法.为了探究目前已有的水下图像增强算法的性能和图像质量客观评价方法是否适用于评估水下图像,本文开展大规模主观实验来对比不同水下图像增强算法在真实水下图像数据集上的性能,并对现有图像质量评价方法用于评估水下图像的准确性进行测试.方法 构建了一个真实的水下图像数据集,其中包含100 幅原始水下图像以及对应的1 000 幅由10 种主流水下图像增强方法增强后的图像.基于成对比较的策略开展水下图像主观质量评价,进一步对主观评价得到的结果进行分析,包括一致性分析、收敛性分析以及显著性检验.最后将10 种现有主流的无参考图像质量评价在本文数据集上进行测试,检验其在真实水下图像数据集上的评价性能.结果 一致性分析中,该数据集包含的主观评分有较高的肯德尔一致性系数,其值为0.41;收敛性分析中,所收集的投票数量与图像数量足够得到稳定的主观评分;表明本文构建的数据集具有良好的有效性与可靠性.此外,目前对比自然图像的无参考图像质量评价方法并不适用于水下图像数据集,验证了水下图像与自然图像的巨大差异.结论 本文构建的真实水下图像数据集为未来水下图像质量客观评价方法以及水下图像增强算法的研究提供了参考与支持.

图像质量评价 水下图像增强 主观质量评价 数据集 成对比较(PC)

顾约瑟 姜求平 邵枫 高伟

宁波大学信息科学与工程学院,宁波 315211 北京大学深圳研究生院信息工程学院,深圳 518055;鹏城实验室,深圳 518055

国内会议

2022低质图像增强前沿论坛

线上

中文

1467-1480

2022-04-21(万方平台首次上网日期,不代表论文的发表时间)