会议专题

一种基于领域语义关系图的短文本实时分析模型

  [目的]对网络社区相关舆情领域判别问题进行研究,提出基于领域语义关系图的短文本分析模型,弥补基于知识库和基于机器学习方法的不足,提高模型准确度和时效性.[方法]以高校学生舆情领域为实验对象,从多源网络社区获取478 303篇文本数据,结合语义抽取规则,构建总计5 248节点、16 488条边的高校舆情领域语义关系图;并实现该图的自动扩展;同时,提出一种基于领域语义关系图的短文本分析模型,实现社区文本领域分析.[结果]在文本领域相关性判别方面,本文模型准确度F值最高可达83.94%,相比同等环境中的支持向量机方法、朴素贝叶斯方法和基于深度学习卷积神经网络方法,准确度分别提升8.56%、5.97%、4.27%.[局限]网络社区文本数据量有限;参数反馈机制不够完善.[结论]与基于机器学习方法比较,本文模型准确度有所提升;时效方面,能够达到秒级别处理,实现实时分析.

语义关系图 文本分析 语义计算

田钟林 吴旭 颉夏青 许晋 陆月明

北京邮电大学网络空间安全学院 北京100876;北京邮电大学可信分布式计算与服务教育部重点实验室 北京100876 北京邮电大学网络空间安全学院 北京100876;北京邮电大学可信分布式计算与服务教育部重点实验室 北京100876;北京邮电大学图书馆 北京100876

国内会议

第二届数据分析与知识发现学术研讨会

兰州

中文

239-248

2019-07-10(万方平台首次上网日期,不代表论文的发表时间)