基于计算机视觉技术的结构表面裂缝检测方法研究
计算机视觉技术用于混凝土结构表面裂缝检测,具有现场检测方便、效率高、客观性强的特点,但图像数据分析是该技术的核心,其中裂缝提取与定量测量较为复杂。为提高裂缝图像处理效率和准确率,将深度学习和数字图像处理技术相结合,提出一种裂缝检测方法。建立基于深度卷积神经网络的裂缝识别模型,在图像上自动定位裂缝并结合图像局域阈值分割方法提取裂缝。在裂缝宽度定量测量方面,采用双边滤波算法和三段线性变换对裂缝图像进行预处理,提高了裂缝边缘识别的精确度。通过改进边缘梯度法,实现裂缝最大宽度的定位和裂缝最大宽度的自动获取。该研究为全自动识别裂缝图像及高精度测量裂缝宽度提供了一种解决方法。
裂缝识别 计算机视觉 深度学习 数字图像处理 裂缝宽度测量
韩晓健 赵志成
南京工业大学土木工程学院,江苏南京211800
国内会议
重庆
中文
418-426
2018-12-14(万方平台首次上网日期,不代表论文的发表时间)