会议专题

FABRICATION OF NANO-ELECTROMECHANICAL STRUCTURES DOWN TO 20 NM BY SPACER TECHNOLOGY

Spacer technology has been developed to fabricate nano-structures for NEMS application. It provides a parallel nano-fabrication method with double or quadplex device density at a certain lithography node. By controlling the deposited film thickness, the feature size of the SiO2 spacer hard mask is reduced down to 35 nm. After the spacer pattern is transferred to Si, a precise thermal oxidation is performed to improve the profile and reduce the plasma damage. Finally, sublimation or HF vapor phase etching is introduced to release the nano-structuresaccording to different structure dimensions. As a result, with better surface morphology, suspended Si nano-beams with a width of 20 nm are obtained. Actuated by mechanical vibration and electrostatic forces, vibrations of the obtained cantilever beams and fixed-fixed beams are observed in SEM. In addition, a metallic nano-nozzle with a diameter of 140 nm is established by electroless plating around thesuspended Si nano-beam served as a mold. As a development of the spacer technology, nano-needle array is demonstrated at the cross points of crossed SiO2 spacers by anisotropic etching. The diameters of the hybridized nano-needles are 300 nm so far and can be furtherreduced by smaller spacer dimension.

spacer technology suspended nano-beam nano-nozzle nano-needle array

Xiang Han Ling Xia Wengang Wu Guizhen Yan Jun Xu Yilong Hao

National Key Laboratory of Micro/Nano Fabrication Technology, Institute of Microelectronics,Peking U Electron Microscopy Laboratory, Peking University, Beijing 100871, China

国际会议

2007年微纳系统集成及其商业化应用国际学术会议(2007 International Conference & Exhibition on Integration and Commercialization of Micro and Nano-Systems)

海南三亚

英文

2007-01-10(万方平台首次上网日期,不代表论文的发表时间)